Approximation of bessel functions by rational functions
نویسندگان
چکیده
منابع مشابه
Approximation by Rational Functions
Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f' is in L log L on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error 0(1/n) on that interval. It is well known that approximation by rational functions of degree n can produce a dramatically smaller error than that for p...
متن کاملAPPROXIMATION OF 3D-PARAMETRIC FUNCTIONS BY BICUBIC B-SPLINE FUNCTIONS
In this paper we propose a method to approximate a parametric 3 D-function by bicubic B-spline functions
متن کاملApproximation by Rational Functions in
The denseness of rational functions with prescribed poles in the Hardy space and disk algebra is considered. Notations. C complex plane D unit disk fz : jzj < 1g Tunit circle fz : jzj = 1g H p Hardy space of analytic functions on D kfk 1 := supfjf(z)j : z 2 D g, the H 1 norm A(D) disk algebra of functions analytic on D and continuous on D P n set of polynomials of degree at most n
متن کاملOn Approximation to Analytic Functions by Rational Functions
Let f(z) be analytic in the interior of a rectifiable Jordan curve C and continuous in the corresponding closed region C. The relation between continuity properties of f(z) on C and degree of approximarion to f(z) by polynomials irn(z) in z of respective degrees n, n = 1, 2, • • • , has been extensively studied. In the present paper we study the relation between continuity properties of f(z) on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics and Control Systems
سال: 2015
ISSN: 1990-5548
DOI: 10.18372/1990-5548.44.8908